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Abstract-This paper deals with the scattering of time harmonic flexural waves by a through crack
in a conducting plate under a uniform magnetic field normal to the crack surface. This study is
based on Mindlin's theory of plate bending for magneto--elastic interactions under a quasistatic
electromagnetic field. It is assumed that the plate has finite and electric conductivity, and the electric
and magnetic permeabilities of free space. An incident wave giving rise to moments symmetric about
the crack plane is applied in an arbitrary direction. Fourier transforms are used to reduce the mixed
boundary value problem to one involving the numerical solution of Fredholm integral equations.
The dynamic moment intensity factor vs frequency is computed and the influence of the magnetic
field and the angle of incidence on the normalized values is displayed graphically. II) 1998 Elsevier
Science Ltd.

L INTRODUCTION

Recently, great interest has been shown in the dynamic crack problems of magneto-­
elasticity. The study of these problems is motivated by their importance in the field of
applied super-conductivity. The dynamic behavior of a cracked electrically conducting
elastic plate is sufficiently affected by the presence of the strong magnetic field. Shindo et
al. have considered the scattering of time harmonic flexural waves by a through crack in a
conducting plate under a uniform magnetic field normal to the crack surface for two
special cases, perfect conductivity (Shindo et al., 1993) and quasistatic electromagnetic field
(Shindo et al., 1995), which are of physical interest.

The present paper presents the scattering of time harmonic flexural waves by a through
crack in a conducting Mindlin plate under a uniform magnetic field to show the effect of
magnetic damping by induced current on the wave motion. Mindlin's theory of plate
bending (Mindlin, 1951) for magneto--elastic interactions in conducting bodies, which
accounts for the rotatory inertia and shear effects, is applied. The plate is engulfed by a
uniform magnetic field directed normal to the crack and subjected to incident waves that
generate vibratory motion in the transverse direction of the plate. Although the solutions
of the present paper concern, in principle, the quasistatic electromagnetic field, they can be
used to obtain approximate appraisal of the influence of finite electric conductivity. A
solution of the magneto--elastic crack problem is obtained by the method of dual integral
equations and the result is expressed in terms of a Fredholm integral equation of the second
kind that is amenable to numerical calculations. Numerical solutions are obtained for the
dynamic moment intensity factor, and are displayed graphically as the parameters of the
frequency, the magnetic field and the angle of incidence are varied.

2. MAGNETO-ELASTIC INTERACTIONS AND MINDLIN PLATE BENDING

We consider an electrically conducting elastic plate of thickness 2h with finite electric
conductivity. The coordinate axes x and yare in the middle plane of the plate and the z­
axis is perpendicular to this plane. It is assumed that the plate has the electric and magnetic
permeabilities ,,= "0 = 8.85 X ]0-12 F/m, K = K o = 1.26 X ]0-.6 Him, respectively, with So
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and "0 being the free space permeabilities. The conducting plate is permeated by a static
uniform magnetic field Ho. We consider small perturbations characterized by the dis­
placement vector u produced in the plate. The magnetic field may be expressed in the form

H=Ho+h,

E = O+e, (1)

where Hand E are the magnetic and electric field intensity vectors, and hand e are the
fluctuating fields and are assumed to be of the same order of magnitude as the particle
displacement u.

Neglecting displacement currents compared to the conduction currents, we have the
following linearized field equations (Dunkin and Eringen, 1963) :

curl h = j,

divh = 0,

dive = 0,

(2)

(3)

(4)

(5)

(6)

where a comma denotes partial differentiation with respect to the coordinate or the time
t, j is the current density, Bo = "oHo is the magnetic induction, p is the mass density,
(a.n , ayY' azZ> a.ty = ay.n ayz = azy,azx = a.c ) are the elastic stress components, and (un Uy, uz)

are the components of u. In a moving conductor the current is determined by Ohm's law
as

(7)

where a is the electric conductivity. The mechanical constitutive equations are taken to be
the usual Hooke's law

an = A(U,.x +u,.y + uz,z) +2j1u"x,

ayl' = A(U", + u).) + uzJ + 2j1u"y,

azz = A(U", + u,,) + uz,z) + 2j1uz,z,

aX) = j1(U',I' +u,.J,

a)Z = j1(u).z + Uz,)),

a xz = j1(uz,x +u"z),

where )., j1 are the Lame constants. Outside the plate the external fields are solutions of

(8)

(9)

curl he = 0,

divhC = 0,

(10)

(11 )
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divee = 0,

where the superscript e denotes the external value of the quantity so labeled.
From eqns (2)-(7), we have the field equations:

hx,x +he,,' +h".z = 0,

e,.x + ey,y +e,,:: = 0,
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(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

where (Hou HoY' H oz), (e" e", eJ and (hx, hy,hz) are the components of "0' e and h.
If the conducting plate is set into steady-state motion by the propagating flexural

waves, the rectangular components of the displacement vector may assume the forms

u, = z'l'x(x,y, t), ul' = z'l'l'(x,y, t), Uz ,= 'l'Ax,y, t). (24)

The normal displacement of the plate is 'l'z and rotations of the normals about the x- and
y-axes are denoted by 'l'x and 'l'y- By using the theory of magnetoelastic plate bending
(Ambartsumian et aI., 1971, 1975), the x, y-components ofe and the z-component ofh may
be expressed as follows:

e, = ({l(x, y, t), eo' = t/J(x, y, t), hz = I(x, y, t), (25)

in which ({l, t/J,fare the functions of x, y, t. Substituting eqns (24) and (25) into eqns (16),
(17) and (20) yields

ez.:: = - ({l.x - t/J.Y'

The linearized electromagnetic boundary conditions are also obtained as

(26)

(27)

(28)
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hAx,y, ±h, t) = h~(x,y, ±h, t),

h/x,y, ±h, t) = h~(x,y, ±h, t),

f(x, y, t) = h~(x, y, ±h, t),

cp(x, y, t) = e~(x, y, ±h, t),

l/!(X, y, t) = e~(x, y, ±h, t),

ez(x,y, ±h, t) = e;(x,y, ±h, t).

(29)

(30)

Taking into account the boundary conditions (29) and (30) and integrating the rep­
resentations (26)-(28) with respect to z, we obtain the remaining electromagnetic field
components as

hAx, y, h, t) +h,(x, y, - h, t)
h, = 2 . +z[fx +O'(ljI + KoHox'Pz,Jl

h
= hl'(x,y,h,t)+hy (x,y, -h,t) + [f _ ( _ H HI )1

y 2 z ,y 0' cp Ko Oy T z,t

(31 )

(32)

Therefore, all the electromagnetic field components are represented by means of the six
desired functions cp, l/!, j, 'Px' 'PI" 'Pz . Substituting eqns (24) and (25) into the eqns (26),
(27) and (IS), and integrating the equations with respect to z from - h to h, we have

j . +O'(,I'+K H'P_) =hAx,y,h,t)-hJx,y, -h,t)
.x 'f' 0 0.\ . ./ 2h '

f
- ( - H HI )_~v<x,y,h,t)-hy(x,y,-h,t)

,y 0' cp Ko OJ' T :../ - 2h '

(33)

(34)

(35)

The bending and twisting moments per unit length (M", M yy, M xy = M yx) and the
vertical shear forces per unit length (Q" Q,) can be expressed in terms of'P.o 'Py and 'Pz as

M n = fh zO'n dz = D('Px,x +v'P.Y.l)'
-h

f
h

MI'Y = zO'yy dz = D('P",y + v'Px,x) ,
-h

fh (I-v)
M n = Ml'x = zO'no dz = ~2-D('Pv,x+'P'-Y)'

-h
(36)
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(37)

where D = 4jlh3j3(l- v) is the flexural rigidity of the plate and v is the Poisson's ratio. The
stress boundary conditions on the plate surfaces are

(Jxz = (Jyz = (Jzz = 0 (z = ±h). (38)

Now if we multiply eqns (21) and (22) by zdz and integrate from -h to h, taking into
account the boundary condition (38), we shall obtain the results

2 3
M xx.x + Mxy,y - Qx =3 ph '¥x.tt - In",

')
.. 3

M xy.x +My)',y - Q.. = 3ph '¥y,11 - In""

The moments Inn and Inry are derived as

(39)

(40)

If eqn (23) is multiplied by dz and integrated from -h to h, taking into account the
boundary condition 08), we obtain

(42)

The load q applied to the plate is derived as

(43)

Substituting eqns (36) and (37) into eqns (39), (40) and (42), we have the equations of
motion for a Mindlin plate under the influence of magnetic field

in which

cD = \(I"x + '¥ ",V' (47)

The rotatory inertia and transverse shear effects are associated with Rand S as given by
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(48)

3. PROBLEM STATEMENT AND METHOD OF SOLUTION

Consider an electrically conducting Mindlin plate having a through crack of length 2a
as shown in Fig. 1. The crack is located on the line y = 0, Ixl < a and the cracked plate is
permeated by the magnetic field (HOF = Ho, Hox = Hoz = 0) of magnetic induction
Bo = KoHo normal to the crack surface. Incident waves giving rise to moments symmetric
about the crack plane y = 0 are applied in an arbitrary direction.

Assuming a quasistatic electromagnetic state which is realized by cancelling the term
i, and retaining other time derivatives in eqns (33)-(35), and neglecting the moments mxx
and m Fy in eqns (44)-(46), we obtain

r t/J
hAx,y,h,t)-hAx,y,-h,t)

+0" =
..x 2h'

i
- (- Hi )_hY(x,y,h,t)-hF(x,y,-h,t)

.y 0" cp KoHoTz.t - 2h '

(49)

(50)

(51)

S 4h2 p2. [(1- v)('Px.xx + 'PX,FY) + (1 + v)et>,xl- 'Px- 'Pz•x = -2- 'P x .,,,

1tJ.1

S . 4h2p
2. [(1- v)('PF.XX + 'P",FF) + (1 + V)et>.FJ - 'Py - 'PO•F= -2- 'P".",

1tJ.1

4h 2p 1 120"KoH o 120" Z
'Pz.xx+'Pz..... +et> = -z- R'PZ,/I- 2 -cp+ 2-(KoHo) 'Pz.t. (52)

1tJ.1 1tJ.1 nil

The incident waves are expressed as follows:

y

'PI, = 'Pxoexp{ -i[k(xcosy+ysiny)+wt]},

'P~ = 'PFO exp{ - i[k(xcos y+y sin y) +wt]},

'P~ = 'Pzoexp{ -i[k(xcosy+ysiny)+wt]},

Qy

(53)

Fig. I. A through crack in an electrically conducting Mindlin plate and flexural waves.



Scattering of oblique flexural waves

qJi = qJoexp{ -i[k(xcosy+ysiny)+wt]},

l/Ji = l/Joexp{-i[k(xcosy+ysiny)+wt]},

/ = fo exp{ -i[k(xcosy+ ysin y) +wt]},

2189

(54)

where the superscript i stands for the incident component, ('P,,0, 'PyO' 'Pzo, qJo, l/JoJo) are the
amplitudes of the input waves ('P~, 'P;" 'P~, qJi, l/Ji,/), k is the wave number and w is the
circular frequency. The angle ofincidence y lies between the limits - 7t and 1T. and is measured
from the positive x-axis. The field eqns (10) and (11) in the vacuum can be written as

h~.y -- h~.z = 0,

h~.z -- h~.x = 0,

h~..x -- h~.y = 0,

h~.x + h~.y + h~.z = 0.

(55)

(56)

Outside the plate the external fields are solutions of eqns (55) and (56). Solutions of these
equations which vanish at z = ± 00 and have the wave factor exp [-- i{k(x co­
s y+y sin y) +wt}1are

h~i = icosyAoexp( -kz) exp{ - i[k(xcos y+y sin y) +wt]}

= - icos yA oexp(kz) exp{.- i[k(xcos y+y sin 11) +wt]}

h~i = isin )'Aoexp( -kz) exp{ -i[k(xcosy+ysin y)+wt]}

= -isinyAoexp(kz) exp{ -i[k(xcosy+ysiny)+wt]}

(z ~ h),

(z ~ -h),

(z ~ h),

(z ~ -h),

h~i = Aoexp( -kz) exp{ - i[k(xcos y+ y sin y) +wt]} (z ~ h),

= Aoexp(kz) exp{ - i[k(xcos y+y sin y) +wt]} (z ~ -·h), (57)

where Ao is an undetermined constant.
Making use of eqns (57) and (29) renders the x, y-magnetic intensity components

h~(x, y, ±h, t), h~.(x, y, ±h ,t) and the amplitudefo

h~(x,y, ±h,t) = ±icosyfoexp{-i[k(xcosy+ysiny)+wt]},

h~(x,y, ±h,t) = ±isinyfoexp{-i[k(xcosy+ysiny)+wt]},

.f~ = A o exp( -kh).

Substituting eqns (53), (54) and (58) into eqns (49)-(51), we obtain

(58)

(kh+l)cosyfo+iahl/Jo =0, qJo = -iWKoHocos2y'Pzo, sinyqJo =cosyl/Jo. (59)

Substituting eqns (53) and (54) into eqns (52) yields
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d ll d l2 d l3

d2 ! d22 dB =0, (60)

d3 ! d32 d33

(61)

in which C2 = (fl.1p) 1/2 is the shear wave velocity and

2(I+v) o.

d12 = d21 = 3(1 _ v) (kh)" sm ycos y,

(62)

(63)

The effect of the magnetic field (Hoy = Ho, H ox = H oz = 0) on the flexural waves at y = nl2
is discussed in Appendix A and the assumption of a quasistatic electromagnetic state is
justified. The dependency of the flexural waves on kh for three directions of the magnetic
field (Hox = Ho, Hoy = H oz = 0; Hoy = Ho, H ox = H oz = 0; Ho:: = Ho,Hox = Hoy = 0) is
discussed in Appendix B.

The complete solution of the waves as diffracted by the crack is obtained by adding
the incident and scattered waves, i.e.,

'PAx, y, t) = 'P~(x, y, t) +'P~(x, y, t),

'Py(x,y,t) = 'P',(X,y,t)+'P~(x,y,t),

'Pz(x,y, t) = 'P~(x,y, t)+'P~(x,y, t),

cp(x,y, t) = cpl(X,y, t)+cpS(x,y, t),

t/J(x,y, t) = t/Jl(X,y, t)+t/J'(x,y, t),

!tx,y, t) =P(x,y, t)+P(x,Y, t), (64)
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where the superscript s stands for the scattered component. Likewise, the plate displace­
ments, moments and shears can also be found by superposing the incident and scattered
parts and the results are obvious. For a traction-free crack, the quantities MyY' MxY' Qy
must each vanish for Ixl < a and y = O. The boundary conditions for the scattered field
become

M~v = 0 (y = 0,0 ~ Ixl < 00),

Q~ = 0 (y == 0,0 ~ Ixl < 00),

e~, = 0 (y =, 0, 0 ~ Ixl < 00),

(65)

(66)

(67)

in which

{M S Ml
,¥Sl'~=0 - IT

Y

(y = 0, 0 ~ Ixl < a),

(y = O,a ~ Ixl < 00),
(68)

M;T = -ikD'¥0(sin2y+vcos 2 y) exp [-i(kxcosy+wt)],

1 1
'11 0 =--"¥xo =---:-'¥vo.

cos,, sm y -

(69)

(70)

In what follows, the exponential time factor exp( - iwt) would be omitted as it always
appears with the quantity ikD'¥0(sin2 y+ vcos2 y) exp( - ikxcos y) as indicated in eqn (69).

We assume that the solutions'll" 'Ill' 'Pz, cp, ljJ andfare of the forms

1 3 fOO
'Px(X,y) = ~i~l -00 A/e<)exp [-yj(et)y] exp(-ictx) det,

1 3 fOO
'¥,!x, y) = ~j~l _ 00 B/et) exp [- yj(et)y] exp( - ietx) det,

1 3 fOC'
'¥ztx,y) =~j~l -OC' C/ct)exp[-Yj(ct)y]exp(-ietx)det,

1 3 fOO
cp(x, y) = ~j~l _ 00 Di(et) exp [- Y/ct)yJ exp( - ictx) d::x,

(71)

(72)

where Aiet) , Biet), C/et), Di(et), Eict), Flet) and ylct) (j = 1,2,3) are the unknown functions
of the transform variable et to be determined later. It can be shown that the solutions
(h~, h~, h~) satisfying eqns (55) and (56) are given by

(z ~ h)
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(z :::;; -h), (73)

(z :::;; -h),

(z ~ h)

1 3 f"" ,
=~j~1 -ex' a2j(lX) exp [-yilX)Y] exp {[1X2 --Y}(IX)t

2Z} exp( -ilXx) dlX

(z :::;; -h),

(74)

(75)

where the unknowns a1j(IX) and a2;(1X) (j = 1,2,3) are to be evaluated from the boundary
conditions (29) at Izi = h.

Making use of eqns (73)-(75) and (29) renders the magnetic intensity components
hxCx,y, ±h, t), hy(x,y, ±h, t) and the unknown function Fj(IX)

x exp { - [1X 2
- yJ (IX)] 1/2h} exp( - ilXx) dlX,

F/IX) = al/(IX) exp { - [!X 2
- yJ (IX)] 1/2h}.

Substituting eqns (71), (72) and (76) into eqns (49)-(51), we have

{h + I , } IXF/(ct.) + iahEj(lX) = 0 (j = 1,2,3),
[1X 2 -y}(IX)] 1/2 .

[1X 2 -y7(ct.)]D;(ct.) = -iWKoH oct.2C/(ct.) (j = 1,2,3),

ict.Ej(ct.) = Yj(IX)Dj(ct.) (j = 1,2,3).

Substituting eqns (71) and (72) into eqns (52) yields

yJ(IX) +ao(ct.)yj(lX) +bo(ct.)y}(ct.) +co(ct.) = 0,

[1X2-y}(ct.)]Aj(lX) = ict.G;(ct.)CJIX) (j = 1,2,3),

(76)

(77)

(78)



in which

Scattering of oblique flexural waves

2 (W)2(1 1) . 120'Kohc
ao(et) = -3et + - - + -- +IW----,

Wo S R n2

+ _I (~)2 [(~)2 --IJ+ 2[(~)2_IJiW'-20'KOhc,
RS WO Wo S Wo n2

co(et) = _et
6

+et
4 (:J2 G+ ~)_et2 ~s (:J2 [(:oY -I}

2193

(79)

(80)

(81)

and Wo = nC2/2h is the cut-off frequency. Substituting eqns (71) into eqns (52), taking into
account eqns (79), we obtain q>(x, y) as

in which

d = 2. [(~)2 -IJ iw
12

0'Kohc
I) S Wo n2 '

2 (W)2(1 I) 120'Koh,MI(et) = -2et + - -+- +iW--o--': ,
W o S R n;-

From eqns (51) and (82), we also obtain ljJ(x,y) as

--wKoHo I 3 fOO T/et)
ljJ(x, y) = - L ~-~-- CI(O() exp[ - Yiet)y] exp( - ictx) det,

do n j~ I -00 C/.

in which

The boundary conditions (65)-(67) render

(82)

(83)

(84)

(85)
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]

L RilX)Cj(lX) = 0,
I~ j

J

L [Pj(:x) -/j(:X)]Cj(IX) = 0,
I~ I

]

L Tj(IX)Cj(:x) = 0,
j= I

(86)

(87)

(88)

(89)

(90)

(91 )

_(~)2~ _I,w.13I1Kohc (j= 1,2,3).
W o R n2

Let C(IX) be defined as

J

C(IX) = L P/IX)Cj(IX),
j~~ I

(92)

(93)

Application of the boundary conditions (68) gives rise to a pair of dual integral equations:

I
f
~ . nM
~< 'if(o)C(0) exp( - lox) do ~ If('in' H' cO" y) exp( - ikx cosy)

I. X) C(IX) exp( -ilXx) dlX = 0

in which Mil' andf(lX) are known as

M iy = ikD'JI0'

G(IX) = ~~IX2!}(rx) -S}(IX)T j (IX)
S2 (IX) T J (IX) -S3(IX)T2(1X)'

(0:::; Ixl < a),

(a:::; Ixl < 00),

(94)

(95)

(96)

(97)

(98)
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The second of eqns (94) would be satisfied if C(ri) is taken as

2195

(99)

(100)

(101)

(102)

where Jo() and J, () being the first kind Bessel functions of order zero and one, and

F= lim./(ri).
O':-+'A..'

(103)

Inserting eqn (102) into the first of eqns (94) yields the Fredholm integral equations of the
second kind:

(104)

(105)

where the kernels Kl(~' 11) and K2(~, 11) are given by

(106)

(107)

The moment intensity factor is defined by

K, = lim [2n(x-a)]1/2 M,Ax, 0)
~_a-t ..

in which

= M o (: )<na)I!2(Sin2y+vcos2y)[<D2(1) -i\}J2(1)]

= M oM 2 (na) 1/2 (sin 2 y+ Vcos2 y)[<D 2 (l) - i'l' 2 (l)J,

M o = ik,D'I'o,

k
M 2 = k,-'

(108)



2196 Y. Shindo and S. Tohyama

k 2 = ~ (~)2 {~+.~+[(~__ ~)2+~ (WO)2JI/2}.
I 2 Wo S R S R RS w

(109)

Keep in mind that the factor exp( - iwt) has been suppressed.

4. DISCUSSION OF RESULTS

The elastodynamic plate solution Ref. [7] is recovered when the magnetic field tends
to zero. In the limit as w ~ 0 at y = n/2, the corresponding static solution of K) = Mo(na)1/2
is obtained. The considered conductor is graphite. The material properties are given in
Table 1. Computed are the numerical values of <l>il) and '¥2(1) in eqns (104) and (105) for
v = 0.3. The ratio k/k l in eqn (108) is known from w in eqn (60) which can be further
reduced to

(110)

in which

The normalized magnetic field of r h = 0.0, 0.01, 0.02 and 0.03 «(Th = 0.5) correspond,
respectively, to magnetic induction Eo = /CoHo = 0.0, 7.0, 9.9 and 12.2 T (tesla).

Figure 2 shows a plot of the normalized moment intensity factor IKIfMo(na) 1/2
1 vs

frequency w normalized against the cut-off frequency Wo for flexural waves at normal
incidence, i.e. y = nl2, the ratio a/h = 5 and four different values of r h mentioned earlier.
The dashed curve obtained for the case of C = 0.0 coincides with the purely elastic case.
The quantity IK1/Mo(na) 112

1 for r h = 0.0 is found to be smaller than the static case and
decrease in magnitude as the frequency is increased. As the three curves for r h # 0.0 possess
higher amplitude than that for r h = 0.0, the magnetic field is seen to increase the local
moment with increasing rho Such an effect dies out at high frequency. The magnetic field
effect for r;, = 0.01, 0.02, 0.03 can increase IKIfMo(na) 1/21 by approximately 25.1, 60.1,
91.3% for w/wo = 0.005 and 6.9, 23.1, 40.4% for w/wo = 0.01 over the corresponding value
for the purely elastic case, respectively. Figures 3-6 show the corresponding results for
y = n/6, n/3, 2n13 and 5n/6. The same gross effect is observed. If w/wo is held constant,
increasing r;, increases the dynamic moment intensity factor depending on y. Figure 7
shows the effect otTh = 0.03 on the variations of IKIfMo(na)I!21 for y = n/4, nl2 and a/h = 5.
The effect of r h = 0.03 on the normalized moment intensity factor IKIfMo(na) 1/21 for y = nl2
is larger than that for ~) = n14. A typical set of parametric curves for wlwo = 0.01 and

Table I. Material properties of graphite

Material

Graphite

Density p
(kg/m J

)

2250

Electrical conductivity (J

(mho/rn)

1.25 ~: 105

Shear modulus JI.
(N/m')

1.96 x 10·
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o 0.01 0.02

/.1=0.3

a/h=5

//;

0.03
0.02
0.01

UJ/UJ o
Fig. 2. DynamIc bending moment intensity factor IKdMo(na) 1i21 vs w/wo (y = n/2, a/h = 5).

2

/.I = 0.3
r = 7! 16 a/h=5
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Fig. 3. Dynamic bending moment intensity factor IKdMo(na)l/'1 vs w/wo (I' = n/6,a/h = 5).
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Fig. 5. Dynamic bending moment intensity factor IKdMo(na)"21 vs W/Wo (y == 2n/3, a/h == 5).
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Fig. 6. Dynamic bending moment intensity factor IK./Mo(1ta)I/21 vs w/wo (y == 5n/6, a/h == 5).
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Fig. 9. Dynamic bending moment intensity factor IKdMo(na)'"[ vs}' (wlwo = 0.01, alh = 5).

a/h = 5 is given in Fig. 8 to illustrate the variation of IKdMo(na)I;21 with fir Note that
IKdMo(na)I/21 approaches 0.661 as w/wo-+ 0 at f h = 0.0 and}! = n/2, and tends to increase
with increasing f h, depending on y. For v = 0.3, a/h = 5 and w/wo = 0.01, it is observed
that the magnetic field effect of r h = 0.03 can increase IKdMo(na)I/2j by approximately
40.4% (y = n/2), 34.8, 19.7% (y = n/3, 2n/3), and 5.6, - 3.3(V" (y = n/6, 5n/6), respectively.
Figure 9 shows the dependency of IKdMo(na) I 21 on)' for UJ/wo = 0.01, r h = 0,0.03, and
a/h = 5. The effect of the magnetic field on iKd M(J(na) 1/21 for }' = nj2 is more pronounced
than that for y -# n/2.

In conclusion, the magneto-elastic analysis of a conducting Mindlin plate with a
through crack subjected to a steady-state magnetic field normal to the crack and an incident
oblique flexural wave has been shown in this study. Mindlin's theory of plate bending
including dynamic magneto-elastic effects is applied and the results are expressed in terms
of the bending moment intensity factor. A quasistatic electromagnetic field is assumed for
the plate. The dynamic moment intensity factor decreases with the increase of the frequency
of the input wave w depending on the angle of incidence }', the crack length to the plate­
thickness ratio a/h, the Poisson's ratio v and the magnetic field f li The existence of the
magnetic field produces larger values of the dynamic moment intensity factor. A significant
increase in the local moment intensity factor occurs at wave frequency w/w" < 0.02 and
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normal incidence y = n/2, and the magnetic field effect dies out gradually as the frequency
is increased.
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APPENDIX A

Here, the effect of the magnetic field of H", = H", Ho, = Ho, = 0 on the flexural waves at normal incidence
y = n/2 is studied. The conducting plate is permeated by a static uniform magnetic field of Ho,· = Ho. The incident
flexural waves at normal incidence y = n/2 are expressed as follows: .

'I",. = 'I' ," exp [- iCky + wt)],

'I'~ = '1',,, exp [-i(ky) +wt)],

q/ = lPo exp [ - iCky + wt)],

if!' = I/Ioexp[-i(ky+wt)],

f' =fo exp [-i(ky+wt)].

The external fields outside the plate are

h:' = iAoexp(--kz)exp[-i(ky+wt)] (z ~ h)

= -iAoexp(kz)exp[-i(ky+wt)] (z,;;; --h).

h~' = Ao exp( -kz) exp [-i(ky+wt)] (z ~ h)

= Aoexp(kz) exp [- i(ky+wt)] (z ';;;-h),

(AI)

(A2)

where Aois an undetermined constant.
Making use of eqns (A2) and (29) renders the x, y-magnetic intensity components h~(x, y, ±h, t),

h',(x, y, ±h, t) and the amplitudefo

h',(x,y, ±h, t) = 0,

h',(x,y, ±h,!) = ±if~exp[-i(ky+wt)],

/0 = Aoexp(-kh).

Substituting eqns (AI) and (A3) into eqns (33)-(35), we have

1/10 = 0,

Substituting eqns (AI) into eqns (45) and (46) yields

(A3)

(A4)



Scattering of oblique flexural waves 2201

2n' I n' ] ( w ) 2n' I+--O"h(kh)3+--(I+kh)rh - +!---(kh)J(l+kh) =0,
9 1- v 3 kc, 9 1- v

(A5)

(A6)

Figure Al shows the variation of the phase velocity Re(w/kc,) with the wave number kh for r h = 0.03 (B" = 12.2 T),
v = 0.3, O"h = 0.5. The dashed curve refers to a quasistatic electromagnetic field. Figure A2 also shows the variation
of the attenuation - Im(w/kc,) with the wave number kh for r h = 0.03 (Bo = 12.2 T), l' = 0.3, O"h = 0.5. The effect
of the magnetic field on Re(w/kc,) is observed at wave number kh < 0.3. The result justifies the assumption of a
quasistatic electromagnetic field.
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Fig. A I. Phase velocity Re(w/kc,) vs wave number kh.
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Fig. A2. Attenuation - [m(wlkc,) vs wave number kh.
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APPENDIX B

The dependency of the flexural wave on kh for three magnetic fields of Ho, = Ho, Ho,. = Ho, = 0 (Case I),
Ho,. = Ho, H o, = Ho, = 0 (Case II), Ho, = Ho, Ho, = Hoy = 0 (Case III) is studied. The conducting plate is
permeated by a static uniform magnetic field H o' A quasistatic electromagnetic field is assumed for the plate.

(a) Case I (Hoy = Ho, Ho, = Ho, = 0)
Substituting eqns (AI) and (A3) into eqns (33), (34) and (51), we have

'Po =.f~ = 0

Substituting eqns (A I) into eqns (45) and (46) yields

2n' ( w) 211' I ,-i--(kh)fh - +---~(kh) = 0,
9 kc, 9 I-v

(b) Case II (Ho,. = Ho, Ho, = Ho, = 0)
From eqn (60), we also have the frequency equation for Case II (Ho,· = Ho, H o, = H o, = 0) as

'1-8 I ,11'J (W) 211' I 1~l :---(kh)-+- f" -- +-~(kh) =0.
)I-v 3 kc, 9 I-v

(c) Case III (Ho, = flo, Hox = flo,. = 0)
Substituting eqns (AI) and (A3) into eqns (33), (34) and (51), we have

'Po = !/Jr. =/0 = o.

Substituting eqns (A 1) into eqns (45) and (46) yields

4 ,(W)4.4 ( W).1 [(8 I I ,) , 11
2J(W\'-(kh)- - +l-(kh)f" - - --- + --11' (kh) I- - -I

3 kc, 3 kc, 3 1- v 9 3 kC2)

.n' ( w) 211
2

I ,-l--(kh)f" -- + -~(kh)- = 0,
9 kc, 9 1- v

(BI)

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

Figure BI shows the variation of the phase velocity Re(wlkc2) with the wave number kh for f" = 0.03
(Do = 12.2T), v = 0.3, a" = 0.5. The curves obtained for the x, z-direction magnetic fields (Cases I, III) almost
coincide with the purely elastic case. Figure B2 also shows the variation of the attenuation -Im(wlkc,) with the
wave number kit for f

"
= 0.03 (Bo = 12.2 T), v = 0.3, an = 0.5. The effect of the y-direction magnetic field (Case

II) on flexural waves IS more pronounced than those of x, z-direction magnetic fields (Cases I, Ill).
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Fig. BI. Phase velocity Re(wjkc,) vs wave number kh (quasistatic electromagnetic field).
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Fig. B2. Attenuation -!m(w/kc,) vs wave number kh (quasistatic electromagnetic field).


